« See you at the A-Team Data Management Summit this week! | Main | S&P Capital IQ Risk Event #2 - Enterprise or Risk Data Strategy? »

10 March 2014

S&P Capital IQ Risk Event #1 - Managed Services

Attended a good event at S&P Capital IQ's offices on Tuesday morning last week in London, built around the BCBS 239 document on risk aggregation and reporting (see earlier PRMIA event on this topic too). A partner vendor of S&P CIQ, Tech Mahindra, started the morning with Richard Burtsal's presentation on "Delivering an Enterprise Data Strategy". Tech Mahindra recently acquired a data management platform from UBS Asset Management and are offering a managed service data management offering based on this (see A-Team article).

Richard said that he wasn't going to "sell" in his presentation (always a worrying admission from one of us data management vendors, it usually means entirely the opposite). That small criticism aside, Richard gave a solid update on the state of the industry and obviously on what Tech Mahindra are offering, and added that:

  • For every $1 spent directly on market data, the total cost of that data goes up by a factor of 6 by the time the data is actually used 
  • 33% of rejected trades are caused by incorrect reference data
  • 60% of staff manipulate, report on or support data on a daily basis (I wonder what the other 40% actually do then? Be good to get the Tower Group report this came from to find out maybe?)
  • 25% of reference data management is wasted due to duplication and inefficiences
  • In their work with UBS Asset Management they had jointly shown that the cost of data management were reduced by 25-30% using a managed service (sounds worth verifying what the "before" situation was I guess, but interesting/impressive).
  • Clients were pushing for much faster instrument setup and a reduction in time from the 1-2 weeks setup in some systems.

There were a few questions from the audience during Richard's talk, the first asked about the differences in doing data management with the buy-side and data management on the sell-side. Richard said that his experience was that the buy-side managed less instruments (<500,000) but with greater depth of data, and sell-side held more instruments (10M+) but with less depth of data (not sure that completely reflects my experience, but sounds worth a survey maybe). 

The second question was why is the utility model for data management going to succeed right now, when previous attempts over the past 10 years had failed? Richard responded that he thought Tech Mahindra would succeed due to:

  • Tech Mahindra are data-vendor agnostic (I assume aimed at Markit-Cadis and Bloomberg-PolarLake)
  • Tech Mahindra own all their own IP (hmm, not really so sure this is a good reason or even a differentiator, but a I guess aimed at managed services that are not run by the firm that develops the data management system?)

I think the answers to this second question need thinking through more clearly, to be fair Richard had stated the 25% cost reduction already as one benefit, and various folks have said that the technology is ripe for these kinds of offerings now, but all the same the response need to be more fully developed to convince many I think (I remain undecided personally, it would be good to have some more evidence to back this up). One of the S&P CIQ added that what he thinks clients want is "Utility of Delivery" and not "Utility of Content" which I thought was a sensible comment and one that I will be revisiting in the coming months. 

On a related note to why managed services just now, another audience member asked how client specific data was managed within a utility or managed service model, and Richard said that client specific data was often managed at the client but that they can upload and integrate client generated data into the managed service offering. I think this is a very key issue within the debate about managed services and utilities, I mean I get the point the data utility proponents make that certain datasets are simple "facts" as such are either write or wrong and hence commoditisable, but much of the data is subjective and all of the data needs validating together in the context of its intended use in my view. I guess I kind of loose myself in looping arguments about why data utility vendors aren't ultimately wanting to be the next Thomson Reuters or Bloomberg (not that that is not a laudible aim but it is not going to change the world or indeed financial markets data provision very much).

 

 

TrackBack

TrackBack URL for this entry:
http://www.typepad.com/services/trackback/6a00e550575fab883301a3fccfc775970b

Listed below are links to weblogs that reference S&P Capital IQ Risk Event #1 - Managed Services:

Comments

The comments to this entry are closed.

Xenomorph: analytics and data management

About Xenomorph

Xenomorph is the leading provider of analytics and data management solutions to the financial markets. Risk, trading, quant research and IT staff use Xenomorph’s TimeScape analytics and data management solution at investment banks, hedge funds and asset management institutions across the world’s main financial centres.

@XenomorphNews



Blog powered by TypePad
Member since 02/2008